Some remarks concerning bureaucracy and medicine

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Examples and Remarks Concerning Groups

We present some examples and remarks which may be helpful to those who are dealing with an abstract algebra or a first semester group theory course. Alternating groups, dihedral groups, and symmetric groups of small orders are treasure troves of elementary examples and counter examples concerning groups. Mathematics Subject Classification: 20-01, 20-02, 20B05, 20B07, 20E06

متن کامل

Some Remarks Concerning the Baum-Connes Conjecture

P. Baum and A. Connes have made a deep conjecture about the calculation of the K-theory of certain types of C∗-algebras [1, 2]. In particular, for a discrete group Γ they have conjectured the calculation of K∗(C r (Γ)), the Ktheory of the reduced C∗-algebra of Γ. So far, there is quite little evidence for this conjecture. For example, there is not a single property T group for which it is known...

متن کامل

Some Remarks concerning D – Metric Spaces

In this note we make some remarks concerning D–metric spaces, and present some examples which show that many of the basic claims concerning the topological structure of such spaces are incorrect, thus nullifying many of the results claimed for these spaces.

متن کامل

SOME REMARKS CONCERNING MOD-n K-THEORY

The spectral sequence predicted by A. Beilinson relating motivic cohomology to algebraic K-theory has been established for smooth quasi-projective varieties over a field (cf. [FS], [L1]). Among other properties verified, this spectral sequence has the expected multiplicative behavior (involving cup product in motivic cohomology and product in algebraic K-theory) and a good multiplicative “mod-n...

متن کامل

Some Remarks Concerning Potentials on Different Spaces

Here dz denotes Lebesgue measure on R. More precisely, if f lies in L(R), then P (f) is defined almost everywhere on R if 1 ≤ q < n, it is defined almost everywhere modulo constants when q = n, and it is defined modulo constants everywhere if n < q < ∞. (If q = ∞, then one can take it to be defined modulo affine functions.) We shall review the reasons behind these statements in a moment. The ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Gesnerus

سال: 1985

ISSN: 0016-9161,2297-7953

DOI: 10.1163/22977953-0420304003